Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 11(1): 19998, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462031

ABSTRACT

Understanding the effects of metabolism on the rational design of novel and more effective drugs is still a considerable challenge. To the best of our knowledge, there are no entirely computational strategies that make it possible to predict these effects. From this perspective, the development of such methodologies could contribute to significantly reduce the side effects of medicines, leading to the emergence of more effective and safer drugs. Thereby, in this study, our strategy is based on simulating the electron ionization mass spectrometry (EI-MS) fragmentation of the drug molecules and combined with molecular docking and ADMET models in two different situations. In the first model, the drug is docked without considering the possible metabolic effects. In the second model, each of the intermediates from the EI-MS results is docked, and metabolism occurs before the drug accesses the biological target. As a proof of concept, in this work, we investigate the main antiviral drugs used in clinical research to treat COVID-19. As a result, our strategy made it possible to assess the biological activity and toxicity of all potential by-products. We believed that our findings provide new chemical insights that can benefit the rational development of novel drugs in the future.


Subject(s)
Antiviral Agents/metabolism , COVID-19 Drug Treatment , Drug Discovery , SARS-CoV-2/drug effects , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/metabolism , Adenine/pharmacology , Adenosine/adverse effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Amides/adverse effects , Amides/metabolism , Amides/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Chloroquine/adverse effects , Chloroquine/analogs & derivatives , Chloroquine/metabolism , Chloroquine/pharmacology , Drug Design , Humans , Metabolic Networks and Pathways , Molecular Docking Simulation , Nitro Compounds/adverse effects , Nitro Compounds/metabolism , Nitro Compounds/pharmacology , Pyrazines/adverse effects , Pyrazines/metabolism , Pyrazines/pharmacology , Pyrrolidines/adverse effects , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Ribavirin/adverse effects , Ribavirin/metabolism , Ribavirin/pharmacology , SARS-CoV-2/metabolism , Thiazoles/adverse effects , Thiazoles/metabolism , Thiazoles/pharmacology
2.
J Med Chem ; 64(7): 3885-3896, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1155689

ABSTRACT

Quinacrine (QC) and chloroquine (CQ) have antimicrobial and antiviral activities as well as antimalarial activity, although the mechanisms remain unknown. QC increased the antimicrobial activity against yeast exponentially with a pH-dependent increase in the cationic amphiphilic drug (CAD) structure. CAD-QC localized in the yeast membranes and induced glucose starvation by noncompetitively inhibiting glucose uptake as antipsychotic chlorpromazine (CPZ) did. An exponential increase in antimicrobial activity with pH-dependent CAD formation was also observed for CQ, indicating that the CAD structure is crucial for its pharmacological activity. A decrease in CAD structure with a slight decrease in pH from 7.4 greatly reduced their effects; namely, these drugs would inefficiently act on falciparum malaria and COVID-19 pneumonia patients with acidosis, resulting in resistance. The decrease in CAD structure at physiological pH was not observed for quinine, primaquine, or mefloquine. Therefore, restoring the normal blood pH or using pH-insensitive quinoline drugs might be effective for these infectious diseases with acidosis.


Subject(s)
Antifungal Agents/pharmacology , Chloroquine/pharmacology , Quinacrine/pharmacology , Surface-Active Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Cell Membrane/metabolism , Chloroquine/chemistry , Chloroquine/metabolism , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Structure , Monosaccharide Transport Proteins/antagonists & inhibitors , Protons , Quinacrine/chemistry , Quinacrine/metabolism , Saccharomyces cerevisiae/drug effects , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
3.
Curr Drug Metab ; 21(14): 1127-1135, 2020.
Article in English | MEDLINE | ID: covidwho-968953

ABSTRACT

BACKGROUND: In clinical practice, chloroquine and hydroxychloroquine are often co-administered with other drugs in the treatment of malaria, chronic inflammatory diseases, and COVID-19. Therefore, their metabolic properties and the effects on the activity of cytochrome P450 (P450, CYP) enzymes and drug transporters should be considered when developing the most efficient treatments for patients. METHODS: Scientific literature on the interactions of chloroquine and hydroxychloroquine with human P450 enzymes and drug transporters, was searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/) and the ADME database (https://life-science.kyushu.fujitsu.com/admedb/). RESULTS: Chloroquine and hydroxychloroquine are metabolized by P450 1A2, 2C8, 2C19, 2D6, and 3A4/5 in vitro and by P450s 2C8 and 3A4/5 in vivo by N-deethylation. Chloroquine effectively inhibited P450 2D6 in vitro; however, in vivo inhibition was not apparent except in individuals with limited P450 2D6 activity. Chloroquine is both an inhibitor and inducer of the transporter MRP1 and is also a substrate of the Mate and MRP1 transport systems. Hydroxychloroquine also inhibited P450 2D6 and the transporter OATP1A2. CONCLUSIONS: Chloroquine caused a statistically significant decrease in P450 2D6 activity in vitro and in vivo, also inhibiting its own metabolism by the enzyme. The inhibition indicates a potential for clinical drug-drug interactions when taken with other drugs that are predominant substrates of the P450 2D6. When chloroquine and hydroxychloroquine are used clinically with other drugs, substrates of P450 2D6 enzyme, attention should be given to substrate-specific metabolism by P450 2D6 alleles present in individuals taking the drugs.


Subject(s)
Chloroquine/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroxychloroquine/metabolism , Membrane Transport Proteins/metabolism , Animals , COVID-19/metabolism , Chloroquine/therapeutic use , Cytochrome P-450 Enzyme Inhibitors/therapeutic use , Drug Interactions/physiology , Humans , Hydroxychloroquine/therapeutic use , Pharmaceutical Preparations/metabolism , COVID-19 Drug Treatment
4.
J Proteome Res ; 19(11): 4706-4717, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-950742

ABSTRACT

Corona virus disease (COVID-19) is a dangerous disease rapidly spreading all over the world today. Currently there are no treatment options for it. Drug repurposing studies explored the potency of antimalarial drugs, chloroquine and hydroxychloroquine, against SARS-CoV-2 virus. These drugs can inhibit the viral protease, called chymotrypsin-like cysteine protease, also known as Main protease (3CLpro); hence, we studied the binding efficiencies of 4-aminoquinoline and 8-aminoquinoline analogs of chloroquine. Six compounds furnished better binding energies than chloroquine and hydroxychloroquine. The interactions with the active site residues especially with Cys145 and His41, which are involved in catalytic diad for proteolysis, make these compounds potent main protease inhibitors. A regression model correlating binding energy and the molecular descriptors for chloroquine analogs was generated with R2 = 0.9039 and Q2 = 0.8848. This model was used to screen new analogs of primaquine and molecules from the Asinex compound library. The docking and regression analysis showed these analogs to be more potent inhibitors of 3CLpro than hydroxychloroquine and primaquine. The molecular dynamic simulations of the hits were carried out to determine the binding stabilities. Finally, we propose four compounds that show drug likeness toward SARS-CoV-2 that can be further validated through in vitro and in vivo studies.


Subject(s)
Betacoronavirus , Chloroquine , Coronavirus Infections/virology , Cysteine Endopeptidases , Pneumonia, Viral/virology , Protease Inhibitors , Viral Nonstructural Proteins , Betacoronavirus/chemistry , Betacoronavirus/metabolism , COVID-19 , Catalytic Domain , Chloroquine/analogs & derivatives , Chloroquine/chemistry , Chloroquine/metabolism , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protein Binding , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
5.
Eur Rev Med Pharmacol Sci ; 24(12): 7164-7172, 2020 06.
Article in English | MEDLINE | ID: covidwho-723470

ABSTRACT

Chloroquine, a 4-aminoquinoline derivative, was initially used to treat malaria. It was later found to have immunomodulating, anti-infective, anti-thrombotic, anti-tumor, and metabolic effects. Recently, many studies have focused on the application of chloroquine in viral infections. Most in vitro studies suggested that chloroquine exerted some benefit in infections from viruses. However, animal experiment and clinical trials that attempted to use chloroquine in prevention or treatment of viral infections have reported disappointing results. It might be attributable to inadequate steady-state whole blood chloroquine concentration necessary for exerting its antiviral effects. A 16 µM/L steady-state whole blood concentration of chloroquine should suffice in antiviral treatment with minimal toxicity. Furthermore, chloroquine has both acute and cumulative toxicity. Hence, not only the appropriate treatment dose is crucial, the occurrence of adverse reactions should also be closely monitored and treated in time. Herein, we report the antiviral mechanisms, effects, safety and adverse effects of chloroquine.


Subject(s)
Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Chloroquine/adverse effects , Chloroquine/pharmacology , Viruses/drug effects , Animals , Antiviral Agents/metabolism , Chloroquine/metabolism , Humans
6.
Int J Antimicrob Agents ; 56(2): 106012, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-438396

ABSTRACT

In the current spread of novel coronavirus (SARS-CoV-2), antiviral drug discovery is of great importance. AutoDock Vina was used to screen potential drugs by molecular docking with the structural protein and non-structural protein sites of new coronavirus. Ribavirin, a common antiviral drug, remdesivir, chloroquine and luteolin were studied. Honeysuckle is generally believed to have antiviral effects in traditional Chinese medicine. In this study, luteolin (the main flavonoid in honeysuckle) was found to bind with a high affinity to the same sites of the main protease of SARS-CoV-2 as the control molecule. Chloroquine has been proved clinically effective and can bind to the main protease; this may be the antiviral mechanism of this drug. The study was restricted to molecular docking without validation by molecular dynamics simulations. Interactions with the main protease may play a key role in fighting against viruses. Luteolin is a potential antiviral molecule worthy of attention.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Chloroquine/pharmacology , Computational Biology , Coronavirus Infections/virology , Luteolin/pharmacology , Pneumonia, Viral/virology , Antiviral Agents/chemistry , COVID-19 , Chloroquine/metabolism , Humans , Luteolin/metabolism , Molecular Docking Simulation , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL